Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.785
Filtrar
1.
Schizophr Bull ; 49(3): 646-658, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36723169

RESUMO

BACKGROUND AND HYPOTHESIS: Antipsychotics (APs), the cornerstone of schizophrenia treatment, confer a relatively high risk of constipation. However, the mechanisms underpinning AP-induced constipation are poorly understood. Thus, we hypothesized that (1) schizophrenia patients with AP-induced constipation have distinct metabolic patterns; (2) there is more than one mechanism at play in producing this adverse drug effect; and (3) AP-associated changes in the gut microbiome are related to the altered metabolic profiles. STUDY DESIGN: Eighty-eight schizophrenia patients, including 44 with constipation (C) and 44 matched patients without constipation (NC), were enrolled in this study. Constipation was diagnosed by Rome IV criteria for constipation and colonic transit time using radiopaque markers (ROMs) while severity was evaluated with the Bristol Stool Form Scale (BSS) and Constipation Assessment Scale (CAS). Fasting blood samples were drawn from all participants and were subjected to non-targeted liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. STUDY RESULTS: Eleven metabolites were significantly altered in AP-induced constipation which primarily disturbed sphingolipid metabolism, choline metabolism, and sphingolipid signaling pathway (P value < .05, FDR < 0.05). In the C group, changes in the gut bacteria showed a certain degree of correlation with 2 of the significantly altered serum metabolites and were associated with alterations in choline metabolism. CONCLUSIONS: Our findings indicated that there were disturbances in distinct metabolic pathways that were associated with AP-induced constipation. In addition, this study presents evidence of a link between alterations in the gut microbiome and host metabolism which provides additional mechanistic insights on AP-induced constipation.


Assuntos
Antipsicóticos , Constipação Intestinal , Esquizofrenia , Humanos , Antipsicóticos/efeitos adversos , Colina/metabolismo , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Esquizofrenia/sangue , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esfingolipídeos/metabolismo , Estudos de Casos e Controles , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
2.
Sci Rep ; 12(1): 11884, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831335

RESUMO

Liver cirrhosis is a late-stage liver disease characterized by excessive fibrous deposition triggering portal-hypertension (PH); the prime restrainer for cirrhosis-related complications. Remedies that can dually oppose hepatic fibrosis and lower PH, may prevent progression into decompensated-cirrhosis. Different Astragalus-species members have shown antifibrotic and diuretic actions with possible subsequent PH reduction. However, A.spinosus and A.trigonus were poorly tested for eliciting these actions. Herein, A.spinosus and A.trigonus roots and aerial parts extracts were subjected to comprehensive metabolic-fingerprinting using UHPLC-MS/MS resulting in 56 identified phytoconstituents, followed by chemometric untargeted analysis that revealed variable metabolic profiles exemplified by different species and organ types. Consequently, tested extracts were in-vivo evaluated for potential antifibrotic/anticirrhotic activity by assessing specific markers. The mechanistic prospective to induce diuresis was investigated by analyzing plasma aldosterone and renal-transporters gene-expression. Serum apelin and dimethylarginine-dimethylaminohydrolase-1 were measured to indicate the overall effect on PH. All extracts amended cirrhosis and PH to varying extents and induced diuresis via different mechanisms. Further, An OPLS model was built to generate a comprehensive metabolic-profiling of A.spinosus and A.trigonus secondary-metabolites providing a chemical-based evidence for their efficacious consistency. In conclusion, A.spinosus and A.trigonus organs comprised myriad pharmacologically-active constituents that act synergistically to ameliorate cirrhosis and associated PH.


Assuntos
Astrágalo , Hipertensão Portal , Cirrose Hepática , Extratos Vegetais , Aldosterona/sangue , Amidoidrolases/sangue , Apelina/sangue , Astrágalo/química , Astrágalo/metabolismo , Cromatografia Líquida de Alta Pressão , Diurese , Concentração de Íons de Hidrogênio , Hipertensão Portal/sangue , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/etiologia , Hipertensão Portal/metabolismo , Fígado/metabolismo , Cirrose Hepática/sangue , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Metaboloma/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Estudos Prospectivos , Espectrometria de Massas em Tandem
3.
Artigo em Inglês | MEDLINE | ID: mdl-35245842

RESUMO

A new method involving gut microbiota biotransformation, spectrum-effect relationship analysis and metabolomics analysis was developed to study the antitussive and expectorant microbial metabolites of platycosides fraction (MPFs) of Platycodonis Radix. Furthermore, their possible metabolic mechanisms were studied for the first time. The findings showed that the antitussive and expectorant effects of the platycosides fraction (PF) were significantly enhanced by the gut microbiota biotransformation. 11 active antitussive microbial metabolites and 12 active expectorant microbial metabolites, which shared 8 components, were successfully screened out via spectrum-effect relationship analysis. The prototypes of the active microbial metabolites could be reversely traced according to the gut microbiota biotransformation pathways. It was found out that one platycoside could produce several active microbial metabolites and several different platycosides could produce the same active microbial metabolite. In addition, the metabolomics analysis showed that both the PF and its active microbial metabolites could regulate the same metabolomic pathways of Linoleic acid metabolism, Arachidonic acid metabolism and Glycerophospholipid metabolism to exert antitussive activity, and regulate the same metabolomic pathway of Arachidonic acid metabolism to exert expectorant activity. These findings suggested the microbial metabolites may be the active forms of the platycosides. Overall, the proposed approach was useful in screening the active microbial metabolites; this work explained the in vivo antitussive and expectorant metabolic mechanisms of multi-constituents, multi-targets and synergistic effects of PF of Platycodonis Radix.


Assuntos
Antitussígenos , Expectorantes , Metaboloma/efeitos dos fármacos , Extratos Vegetais , Platycodon , Animais , Antitussígenos/química , Antitussígenos/farmacologia , Cromatografia Líquida , Expectorantes/química , Expectorantes/farmacologia , Microbioma Gastrointestinal , Metabolômica , Camundongos , Ácido Oleanólico/análogos & derivados , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Platycodon/química , Saponinas
4.
Cell ; 185(3): 513-529.e21, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120663

RESUMO

The human gut microbiota resides within a diverse chemical environment challenging our ability to understand the forces shaping this ecosystem. Here, we reveal that fitness of the Bacteroidales, the dominant order of bacteria in the human gut, is an emergent property of glycans and one specific metabolite, butyrate. Distinct sugars serve as strain-variable fitness switches activating context-dependent inhibitory functions of butyrate. Differential fitness effects of butyrate within the Bacteroides are mediated by species-level variation in Acyl-CoA thioesterase activity and nucleotide polymorphisms regulating an Acyl-CoA transferase. Using in vivo multi-omic profiles, we demonstrate Bacteroides fitness in the human gut is associated together, but not independently, with Acyl-CoA transferase expression and butyrate. Our data reveal that each strain of the Bacteroides exists within a unique fitness landscape based on the interaction of chemical components unpredictable by the effect of each part alone mediated by flexibility in the core genome.


Assuntos
Microbioma Gastrointestinal , Metaboloma , Polissacarídeos/metabolismo , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Aminoácidos de Cadeia Ramificada/metabolismo , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Butiratos/química , Butiratos/farmacologia , Coenzima A-Transferases/química , Coenzima A-Transferases/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Variação Genética/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Metaboloma/efeitos dos fármacos , Metaboloma/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Especificidade da Espécie , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica/efeitos dos fármacos
5.
Sci Rep ; 12(1): 2066, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136077

RESUMO

In this study, we utilized an untargeted NMR metabolomics approach to identify the vector response in terms of metabolic profiling after temperature and insecticide exposure in comparison with the control. Clearly, temperature and insecticide exposure cause changes in the underlying metabolism, and the NMR metabolomic profile enables a direct examination of the immediate response of the vector to cope up with these changes. The present study was designed in four parts: A-Aedes aegypti were exposed to 40 °C for one-hour, DDT-4%, malathion-5%, and deltamethrin-0.05% separately and, part B-D; one-hour exposure at 35 °C and 40 °C temperatures followed by one-hour exposure to insecticide. The resultant metabolite profiles were compared with the control. In response to temperature and insecticide exposure, several metabolites and altered pathways were identified. Citrate, maltose, lipids, Nicotinate, Choline, Pyruvate and ß-hydroxybutyrate were found as important components of major biological pathways such as tri-carboxylic acid cycle, branched amino acid degradation, glycolysis/gluconeogenesis, amino acid metabolism, lipid and carbohydrate metabolism, nucleotide PRPP pathway, and phospholipid metabolism. Furthermore, the results also suggest that the changes imposed by exposure to temperature and insecticides individually, are reversed with combined exposure, thus negating the impact of each other and posing a threat to the control of Aedes-borne diseases such as dengue, chikungunya, Zika and yellow fever.


Assuntos
Aedes/metabolismo , Inseticidas/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Doenças Transmitidas por Vetores/transmissão , Aedes/efeitos dos fármacos , Animais , DDT/farmacologia , Resistência a Inseticidas/fisiologia , Malation/farmacologia , Metabolômica/métodos , Mosquitos Vetores/efeitos dos fármacos , Nitrilas/farmacologia , Piretrinas/farmacologia , Temperatura
6.
Oxid Med Cell Longev ; 2022: 4636618, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126813

RESUMO

Inflammatory bowel diseases (IBDs) constitute a group of chronic intestinal conditions prominently featuring deranged metabolism. Effective pharmacological treatments for IBDs are lacking. Isosteviol sodium (STV-Na) exhibits anti-inflammatory activity and may offer therapeutic benefits in chronic colitis. However, the associated mechanism remains unclear. This study is aimed at exploring the therapeutic effects of STV-Na against chronic colitis in terms of metabolic reprogramming and macrophage polarization. Results show that STV-Na attenuated weight loss and colonic pathological damage and restored the hematological and biochemical parameters in chronic colitis mice models. STV-Na also restored intestinal permeability by increasing the goblet cell numbers, which was accompanied by lowered plasma lipopolysaccharide and diamine oxidase levels. Metabolomic analysis highlighted 102 candidate biomarkers and 5 vital pathways that may be crucial in the potential pharmacological mechanism of STV-Na in regulating intestinal inflammation and oxidative stress. These pathways were glycerophospholipid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, the pentose phosphate pathway, and phosphonate and phosphinate metabolism. Furthermore, STV-Na significantly decreased M1 macrophage polarization in the spleen and colon. The mRNA and protein levels of IL-1ß, TNF-α, and NF-κB/p65 in colonic tissue from the colitis mice were decreased after the STV-Na treatment. Overall, STV-Na could alleviate chronic colitis by suppressing oxidative stress and inflammation levels, reprogramming the metabolic profile, inhibiting macrophage polarization, and suppressing the NF-κB/p65 signaling pathway. STV-Na remains a promising candidate drug for treating IBDs.


Assuntos
Colite/patologia , Diterpenos do Tipo Caurano/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Doença Crônica , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana/toxicidade , Diterpenos do Tipo Caurano/uso terapêutico , Glicerofosfolipídeos/metabolismo , Interleucina-1beta/sangue , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Via de Pentose Fosfato , Fenilalanina/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
7.
Molecules ; 27(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209070

RESUMO

Discovering new and effective drugs for the treatment of Alzheimer's disease (AD) is a major clinical challenge. This study focuses on chemical modulation of the gut microbiome in an established murine AD model. We used the 16S rDNA sequencing technique to investigate the effect of xanthohumol (Xn) on the diversity of intestinal microflora in 2-month- and 6-month-old APP/PS1 mice, respectively. APP/PS1 and wild-type mice were treated by gavage with corn oil with or without Xn every other day for 90 days. Prior to and following treatment, animals were tested for spatial learning, cognitive and memory function. We found Xn reduced cognitive dysfunction in APP/PS1 mice and significantly regulated the composition and abundance of gut microbiota both in prevention experiments (with younger mice) and therapeutic experiments (with older mice). Differential microflora Gammaproteobacteria were significantly enriched in APP/PS1 mice treated with Xn. Nodosilineaceae and Rikenellaceae may be the specific microflora modulated by Xn. The penicillin and cephalosporin biosynthesis pathway and the atrazine degradation pathway may be the principal modulation pathways. Taken together, oral treatment with Xn may have a neuroprotective role by regulating the composition of intestinal microflora, a result that contributes to the scientific basis for a novel prophylactic and therapeutic approach to AD.


Assuntos
Produtos Biológicos/farmacologia , Flavonoides/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Propiofenonas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Biodiversidade , Produtos Biológicos/química , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Flavonoides/química , Metagenoma , Metagenômica/métodos , Camundongos , Camundongos Transgênicos , Propiofenonas/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-35151210

RESUMO

Gut microbiota is associated with tumor progress and host metabolic disorder, but whether gut microbiota regulation can affect cancer growth through interfering host metabolism maintains unknown yet. Here, we used combined antibiotics (ABX) to build an extremely altered gut microbiota ecosystem and study its influence on the xenograft MC38 tumor as well as the associations of the effects with host metabolisms. The MC38 tumor bearing mouse was treated with ABX (vancomycin, neomycin and imipenem-cilastatin) to build the extremely altered microbiota ecosystem, the gut microbiota diversity alteration was determined by 16S rRNA based gene sequencing. The effects of the altered microbiota on tumor were assessed by cell apoptosis and growth rate of the tumor. The potential metabolic biomarkers and involved metabolism pathways were screened out by UPLC-QTOF-MS/MS based untargeted metabolomics and KEGG analysis respectively. The correlations between key metabolites and microbiota were analyzed by Spearman correlation analysis. Compared with the un-treated mice, the tumor growth of ABX-treated mice was significantly suppressed, and the cell apoptosis was obviously promoted. The gut microbiota diversity was decreased significantly with the dominant bacteria phylum Bacteroidetes and Firmicutes replaced by Proteobacteria, which involved 14 significantly altered bacteria genera. Four potential targeted metabolism pathways, including sphingolipid, glycerophospholipid, arginine-proline and primary bile acid metabolism, were screened out, and the involved key metabolites such as ceramide, phosphatidylethanolamine, phosphatidylcholine, taurocholic acid and L-proline were correlated significantly with the altered bacteria genera. Through the integrated analysis of microbiome and metabolomics, it was revealed that gut microbiota regulation may inhibit the xenograft MC38 tumor growth potentially by interfering host lipid and amino acid metabolisms, such as sphingolipid, glycerophospholipid, primary bile acid and arginine-proline metabolisms in this case.


Assuntos
Aminoácidos/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos , Metaboloma/efeitos dos fármacos , Neoplasias Experimentais/metabolismo , Animais , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem
9.
Toxicology ; 467: 153095, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999168

RESUMO

Mefentrifluconazole, a new type of chiral triazole fungicide, is widely applied to control a variety of fungal diseases in crops. However, the toxicological effects of mefentrifluconazole on aquatic organisms are unknown, especially at the enantiomer level. In the present study, zebrafish were selected as a typical model for mefentrifluconazole enantiomer exposure. Metabolomic and transcription analyses were performed with 0.01 and 0.10 mg/L mefentrifluconazole and its enantiomers (i.e., rac-mfz/(-)-mfz/(+)-mfz) at 28 days. The 1H nuclear magnetic resonance (NMR)-based metabolomics analysis showed that 9, 10 and 4 metabolites were changed significantly in the rac-mfz, (+)-mfz and (-)-mfz treatment groups compared with the control group, respectively. The differential metabolites were related to energy metabolism, lipid metabolism and amino acid metabolism. The qRT-PCR analysis revealed that the expression of lipid metabolism-, apoptosis- and CYP-related genes in the livers of female zebrafish in rac-mfz and (+)-mfz was 1.61-108.92 times and 2.37-551.34 times higher than that in (-)-mfz, respectively. The results above indicate that exposure to mefentrifluconazole induced enantioselective liver toxicity in zebrafish. Our study underlined the importance of distinguishing different enantiomers, which will contribute to environmental protection.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fluconazol/análogos & derivados , Fungicidas Industriais/toxicidade , Fígado/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Peixe-Zebra , Animais , Feminino , Fluconazol/química , Fluconazol/toxicidade , Fungicidas Industriais/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Metabolômica , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Fatores Sexuais , Estereoisomerismo , Relação Estrutura-Atividade , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
Food Funct ; 13(4): 1808-1821, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35084009

RESUMO

Tripeptide NCW identified in our previous study displayed a strong ACE inhibitory activity, but whether it has any antihypertensive effect in vivo remains unknown. Thus, in this study, we aimed to investigate the protective effects of tripeptide NCW in spontaneously hypertensive rats (SHRs) and to further figure out the serum metabolic profiling variations due to its oral administration via UPLC-Q-TOF-MS/MS-based metabolomics analysis to clarify the underlying hypotensive mechanism. After three weeks of oral administration, the tripeptide NCW-treated group (NCW/SHR group, 80 mg per kg BW per d) showed significantly reduced systolic and diastolic blood pressure by 48.08 ± 3.84 mmHg and 48.92 ± 5.77 mmHg, respectively. Additionally, a total of 25 blood pressure-related metabolites were identified as being significantly changed in SHRs given tripeptide NCW after three weeks. These 25 metabolites might be biomarkers that indicated that the tripeptide NCW exhibits antihypertensive activity via regulating bile acid metabolism, lipid metabolism, amino acid metabolism, purinergic signaling, pantothenate and CoA biosynthesis, and the citrate cycle. Collectively, tripeptide NCW has a protective effect on SHRs associated with serum metabolite abnormalities.


Assuntos
Anti-Hipertensivos , Hipertensão/metabolismo , Metaboloma/efeitos dos fármacos , Oligopeptídeos , Animais , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Biomarcadores/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Metabolômica , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Ratos , Ratos Endogâmicos SHR
11.
Food Funct ; 13(4): 1860-1880, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35084415

RESUMO

Intestinal microbiota and metabonomics were integrated to investigate the efficiency of non-saponification or saponification astaxanthin (N-Asta or S-Asta) derived from Penaeus sinensis by-products on alleviating paracetamol (PCM)-induced oxidative stress. Pre-treatment with N-Asta or S-Asta for 14 days restored the cellular morphology of the intestine and increased glutathione (GSH) levels under PCM overdose in rats. However, S-Asta displayed higher adsorption than that of N-Asta. PCM overdose reduced the richness and diversity of intestinal microbiota in the model group. Comparably, N-Asta or S-Asta pre-treatment increased the Actinobacteria abundance. Increased phyla Bacteroidetes and Verrucomicrobia were only found in the S-Asta-pre-treated group. At the genus level, N-Asta pre-treatment increased Lactobacillus and Parasutterella abundance, whereas S-Asta pre-treatment elevated Bacteroidales_S24-7_group_norank and Ruminococcaceae_uncultured. Compared to the control and model groups, remarkable increases of fecal short-chain fatty acids were detected in both N-Asta and S-Asta pre-treatment groups, suggesting the contribution of N-Asta and S-Asta adsorption to SCFA-producing bacteria enrichment. Furthermore, the genera of Ruminococcaceae_uncultured, Ruminiclostridium_9, Ruminococcaceae_unclassified and Ruminococcus_1 showed high correlations with propionic acid, isobutyric acid, butyric acid, isovaleric acid and valeric acid increases in the S-Asta pre-treated group. Seventeen plasma biomarker metabolites in more than 10 metabolic pathways were responsible for the difference between the N-Asta and S-Asta pre-treated groups. Metabolites GSH, retinol, all-trans-Retinoic acid and taurine related to antioxidant activities were significantly accumulated in the S-Asta pre-treated group, while increasing taurocholic acid levels associated with the anti-inflammatory activity was found in the N-Asta-pre-treated group. Therefore, N-Asta and S-Asta could have potential applications in counterbalancing intestinal flora and metabolite disturbances by overdose chemical induction.


Assuntos
Acetaminofen/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Masculino , Metabolômica , Ratos , Ratos Sprague-Dawley , Xantofilas/farmacologia
12.
Biochem J ; 479(3): 425-444, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35048967

RESUMO

There has been a concern that sodium-glucose cotransporter 2 (SGLT2) inhibitors could reduce skeletal muscle mass and function. Here, we examine the effect of canagliflozin (CANA), an SGLT2 inhibitor, on slow and fast muscles from nondiabetic C57BL/6J mice. In this study, mice were fed with or without CANA under ad libitum feeding, and then evaluated for metabolic valuables as well as slow and fast muscle mass and function. We also examined the effect of CANA on gene expressions and metabolites in slow and fast muscles. During SGLT2 inhibition, fast muscle function is increased, as accompanied by increased food intake, whereas slow muscle function is unaffected, although slow and fast muscle mass is maintained. When the amount of food in CANA-treated mice is adjusted to that in vehicle-treated mice, fast muscle mass and function are reduced, but slow muscle was unaffected during SGLT2 inhibition. In metabolome analysis, glycolytic metabolites and ATP are increased in fast muscle, whereas glycolytic metabolites are reduced but ATP is maintained in slow muscle during SGLT2 inhibition. Amino acids and free fatty acids are increased in slow muscle, but unchanged in fast muscle during SGLT2 inhibition. The metabolic effects on slow and fast muscles are exaggerated when food intake is restricted. This study demonstrates the differential effects of an SGLT2 inhibitor on slow and fast muscles independent of impaired glucose metabolism, thereby providing new insights into how they should be used in patients with diabetes, who are at a high risk of sarcopenia.


Assuntos
Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/biossíntese , Adenilato Quinase/genética , Tecido Adiposo Branco/efeitos dos fármacos , Aminoácidos/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Canagliflozina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Glicólise , Força da Mão , Fígado/efeitos dos fármacos , Masculino , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transportador 2 de Glucose-Sódio/fisiologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Serina-Treonina Quinases TOR/biossíntese , Serina-Treonina Quinases TOR/genética
13.
Dev Cell ; 57(3): 361-372.e5, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35045336

RESUMO

The symbiotic relationship between commensal microbes and host animals predicts unidentified beneficial impacts of individual bacterial metabolites on animal physiology. Peptidoglycan fragments (muropeptides) from the bacterial cell wall are known for their roles in pathogenicity and for inducing host immune responses. However, the potential beneficial usage of muropeptides from commensal bacteria by the host needs exploration. We identified a striking role for muropeptides in supporting mitochondrial homeostasis, development, and behaviors in Caenorhabditis elegans. We determined that the beneficial molecules are disaccharide muropeptides containing a short AA chain, and they enter intestinal-cell mitochondria to repress oxidative stress. Further analyses indicate that muropeptides execute this role by binding to and promoting the activity of ATP synthase. Therefore, given the exceptional structural conservation of ATP synthase, the role of muropeptides as a rare agonist of the ATP synthase presents a major conceptual modification regarding the impact of bacterial cell metabolites on animal physiology.


Assuntos
Complexos de ATP Sintetase/metabolismo , Caenorhabditis elegans/fisiologia , Homeostase , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Peptidoglicano/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Escherichia coli/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Células HEK293 , Humanos , Intestinos/metabolismo , Metaboloma/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
14.
Cancer Genomics Proteomics ; 19(1): 79-93, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34949661

RESUMO

BACKGROUND/AIM: Trastuzumab and tamoxifen are two of the most widely prescribed anti-cancer drugs for breast cancer (BC). To date, few studies have explored the impact of anticancer drugs on metabolic pathways in BC. Metabolomics is an emerging technology that can identify new biomarkers for tracking therapy response and novel therapeutic targets. MATERIALS AND METHODS: We employed ultra-high-performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) to investigate changes in MCF-7 and SkBr3 cell lines treated with either tamoxifen, trastuzumab or a combination of both. The Bruker Human Metabolome Database (HMDB) metabolite library was used to match spectra and the MetaboScape software to assign each feature with a putative metabolite name or molecular formula for metabolite annotation. RESULTS: A total of 98 metabolites were found to significantly differ in abundance in MCF-7 and SkBr3 treated cells. Moreover, the metabolic profile of the combination medication is similar to that of tamoxifen alone, according to functional enrichment analysis. CONCLUSION: Tamoxifen/trastuzumab treatment had a significant effect on pathways essential for the control of energy-production, which have previously been linked to cancer progression, and aggressiveness.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/análise , Neoplasias da Mama/tratamento farmacológico , Tamoxifeno/farmacologia , Trastuzumab/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Cromatografia Líquida de Alta Pressão/métodos , Monitoramento de Medicamentos/métodos , Metabolismo Energético/efeitos dos fármacos , Humanos , Células MCF-7 , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Tamoxifeno/uso terapêutico , Espectrometria de Massas em Tandem/métodos , Trastuzumab/uso terapêutico
15.
Food Funct ; 13(1): 356-374, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904994

RESUMO

This study investigated the metabolic effects of Fuzhuan brick tea (FBT) in high-fat diet (HFD)-induced obese mice and the potential contribution of gut microbiota. The results showed that FBT ameliorated the HFD-induced glycerophospholipid metabolic aberrance, specifically increased the serum levels of phosphatidylcholines (PCs), lysophosphatidylcholines (LysoPCs), and the ratio of PC to phosphatidylethanolamines (PE). Besides, FBT increased the serum level of gut microbiota-derived aryl hydrocarbon receptor (AhR) ligand, 3-indole propionic acid, as well as the relative abundance of intestinal AhR-ligand producing bacteria such as Clostridiaceae, Bacteroidales_S24-7_group, and Lactobacillaceae. However, the metabolic benefits of FBT were weakened when the gut microbiota were depleted by antibiotic treatment, thereby suggesting that gut microbiota was required for FBT to regulate glycerophospholipid metabolism. Indeed, the metabolites regulated by FBT were significantly correlated with the AhR-ligand producing bacteria. The KEGG pathway enrichment analysis and expressions of AhR target genes indicated that FBT would improve the glycerophospholipid metabolism via the AhR-Pemt signal axis, in which the gut microbiota and their metabolites played pivotal mediators. Overall, FBT could be a functional beverage to improve HFD-induced metabolic disorders in a gut microbiota dependent manner.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Chá , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos
16.
Microbiol Res ; 254: 126911, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34763140

RESUMO

As a major secondary metabolite derived from a dominant marine filamentous fungus A7, kojic acid might confer the strain a competitive advantage in natural colonization. The bioactivities of kojic acid against bacterial growth and biofilm formation were investigated against Acinetobacter baumannii (A. baumannii) ATCC 19606. Then, transcriptomics and metabolomics were integrated to characterize the underlying mechanisms. It turned out that kojic acid exhibited a significantly suppressive impact against biofilm but a weak bacteriostatic activity. Meanwhile, a variety of transcriptional and metabolomic profiles were altered within biofilm formation as a result of kojic acid exposure. The alterations highlighted the mechanisms underlying biofilm formation, comprising of quorum sensing, fimbria assembly, bacterial virulence and metabolic plasticity, which could somewhat be hampered by kojic acid. The present study comprehensively elucidated multifactorial schemes for kojic acid combating biofilm formation of A. baumannii, which might provide mechanistic insights into the development of therapeutic strategies against this notorious pathogen. Meanwhile, our observations might shed new light on the ecological roles of kojic acid, e.g., serving as chemical deterrents for host adaptation to marine niches, which, however, awaits further validation.


Assuntos
Acinetobacter baumannii , Biofilmes , Metaboloma , Pironas , Transcriptoma , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Biofilmes/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica , Pironas/farmacologia , Transcriptoma/efeitos dos fármacos
17.
Gynecol Endocrinol ; 38(1): 45-49, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34664527

RESUMO

OBJECTIVE: Evaluating the impact of coenzyme Q10 (CoQ10) supplementation on hormonal indices, mental health, and biomarkers of inflammatory responses and oxidative stress among female patients suffering from polycystic ovary syndrome (PCOS). METHODS: The present double-blinded, placebo-controlled randomized clinical trial consisted of 55 PCOS women (aged 18-40 years old), who were randomized into groups receiving 100 mg/day of CoQ10 (28 cases) or placebo (27 cases) for 12 weeks. RESULTS: The supplementation of CoQ10 decreased significantly the scores of Beck Depression Inventory (BDI) (p = .03) and Beck Anxiety Inventory (BAI) (p = .01) and high-sensitivity C-reactive protein (hs-CRP) level (p = .005) when comparing with the placebo group. Moreover, CoQ10 group exhibited a significant drop in total testosterone (p = .004), dehydroepiandrosterone sulfate (DHEAS) (p < .001), hirsutism (p = .002) and malondialdehyde (MDA) (p = .001) levels in the serum, and a significant rise in sex hormone-binding globulin (SHBG) (p < .001) and total antioxidant capacity (TAC) (p < .001) levels in the serum than the placebo group. CONCLUSIONS: 12-week supplementation of CoQ10 to PCOS women showed beneficial impact on BDI, BAI, hs-CRP, total testosterone, DHEAS, hirsutism, SHBG, TAC and MDA levels.


Assuntos
Saúde Mental , Metaboloma/efeitos dos fármacos , Síndrome do Ovário Policístico/tratamento farmacológico , Ubiquinona/análogos & derivados , Adolescente , Adulto , Antioxidantes/análise , Ansiedade/epidemiologia , Biomarcadores/sangue , Proteína C-Reativa/análise , Sulfato de Desidroepiandrosterona/sangue , Depressão/epidemiologia , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Hirsutismo/epidemiologia , Humanos , Inflamação/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Síndrome do Ovário Policístico/fisiopatologia , Síndrome do Ovário Policístico/psicologia , Globulina de Ligação a Hormônio Sexual/análise , Testosterona/sangue , Ubiquinona/administração & dosagem , Adulto Jovem
18.
Transl Res ; 240: 50-63, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34673277

RESUMO

Trimethylamine-N-oxide (TMAO), a gut microbiota-produced metabolite, is accumulated in chronic kidney disease (CKD) patients. It is well known to contribute to CKD-related cardiovascular complications. However, the effect of TMAO on peritoneal dialysis (PD)-related peritonitis remains largely unknown. Here, we demonstrate that serum concentrations of TMAO were positively correlated with C-reactive protein levels, and the appearance rate of dialysate IL-6 and PAI-1, in PD patients. During the follow-up period of 28.3 ± 8.0 months, patients with higher TMAO levels (≥50 µM) had a higher risk of new-onset peritonitis (HR, 3.60; 95%CI, 1.18-10.99; P=0.025) after adjusting for sex, age, diabetes, PD duration, BUN, rGFR, C-reactive protein, BMI and ß2-M. In CKD rat models, TMAO significantly promoted peritoneal dialysate-induced inflammatory cell infiltration, inflammatory cytokines production in the peritoneum. In vitro study revealed that TMAO directly induced primary peritoneal mesothelial cell necrosis, together with increased production of pro-inflammatory cytokines including CCL2, TNF-α, IL-6, and IL-1ß. In addition, TMAO significantly increased TNF-α-induced P-selectin production in mesothelial cells, as well as high glucose-induced TNF-α and CCL2 expression in endothelial cells. In conclusion, our data demonstrate that higher levels of TMAO exacerbate peritoneal inflammation and might be a risk factor of incidence of peritonitis in PD patients.


Assuntos
Microbioma Gastrointestinal , Inflamação/patologia , Metaboloma , Metilaminas/efeitos adversos , Diálise Peritoneal/efeitos adversos , Peritônio/patologia , Peritonite/epidemiologia , Peritonite/etiologia , Adulto , Animais , Morte Celular , Citocinas/metabolismo , Epitélio/patologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Metaboloma/efeitos dos fármacos , Pessoa de Meia-Idade , Selectina-P/metabolismo , Ratos Sprague-Dawley , Insuficiência Renal Crônica/complicações , Fatores de Risco , Regulação para Cima
19.
Artigo em Inglês | MEDLINE | ID: mdl-34864424

RESUMO

Human gut microbiota is critical for human health, as their dysbiosis could lead to various diseases such as irritable bowel syndrome and obesity. Black raspberry (BRB) has been increasingly studied recently for its impact on gut microbiota as a rich source of phytochemicals (e.g., anthocyanin). To investigate the effect of BRB extract on the gut microbiota composition and their metabolism, an in-vitro human colonic model (HCM) was utilized to study the direct interaction between BRB and gut microbiome. Conditions (e.g., pH, temperature, anaerobic environment) in HCM were closely monitored and maintained to simulate the human intestinal system. Fresh fecal samples donated by three young healthy volunteers were used for gut microbiota inoculation in the HCM. 16S ribosomal DNA sequencing and liquid-chromatography mass spectrometry (LC/MS) based metabolomics were performed to study the impact of BRB on gut microbiota characteristics and their metabolism (fatty acids, polar metabolites, and phenolic compounds). Our data suggested that BRB intervention modulated gut microbiota at the genus level in different HCM sections mimicing ascending, transverse, and descending colons. Relative abundance of Enterococcus was commonly decreased in all colon sections, while modulations of other bacteria genera were mostly location-dependent. Meanwhile, significant changes in the metabolic profile of gut microbiota related to fatty acids, endogenous polar metabolites, and phenolic compounds were detected, in which arginine and proline metabolism, lysine degradation, and aminoacyl-tRNA biosynthesis were mostly regulated. Moreover, we identified several significant associations between altered microbial populations and changes in microbial metabolites. In summary, our study revealed the impact of BRB intervention on gut microbiota composition and metabolism change, which may exert physiological change to host metabolism and host health.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Extratos Vegetais , Rubus/química , Adulto , Cromatografia Líquida , Humanos , Masculino , Espectrometria de Massas , Metabolômica , Modelos Biológicos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Adulto Jovem
20.
Gastroenterology ; 162(3): 743-756, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34774538

RESUMO

BACKGROUND & AIMS: Epidemiologic and murine studies suggest that dietary emulsifiers promote development of diseases associated with microbiota dysbiosis. Although the detrimental impact of these compounds on the intestinal microbiota and intestinal health have been demonstrated in animal and in vitro models, impact of these food additives in healthy humans remains poorly characterized. METHODS: To examine this notion in humans, we performed a double-blind controlled-feeding study of the ubiquitous synthetic emulsifier carboxymethylcellulose (CMC) in which healthy adults consumed only emulsifier-free diets (n = 9) or an identical diet enriched with 15 g per day of CMC (n = 7) for 11 days. RESULTS: Relative to control subjects, CMC consumption modestly increased postprandial abdominal discomfort and perturbed gut microbiota composition in a way that reduced its diversity. Moreover, CMC-fed subjects exhibited changes in the fecal metabolome, particularly reductions in short-chain fatty acids and free amino acids. Furthermore, we identified 2 subjects consuming CMC who exhibited increased microbiota encroachment into the normally sterile inner mucus layer, a central feature of gut inflammation, as well as stark alterations in microbiota composition. CONCLUSIONS: These results support the notion that the broad use of CMC in processed foods may be contributing to increased prevalence of an array of chronic inflammatory diseases by altering the gut microbiome and metabolome (ClinicalTrials.gov, number NCT03440229).


Assuntos
Carboximetilcelulose Sódica/efeitos adversos , Dieta/efeitos adversos , Emulsificantes/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Animais , Método Duplo-Cego , Disbiose/etiologia , Fezes , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...